Hướng dẫn Giải bài tập Toán 11 Cánh Diều Chương 3 Bài 3 Hàm số liên tục Toán 11 Cánh Diều giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức.
-
Khởi động trang 73 SGK Toán 11 Cánh diều Tập 1 - CD
Cầu sông Hàn là một trong những cây cầu bắc qua sông Hàn ở Đà Nẵng. Đây là cây cầu đầu tiên do kĩ sư, công nhân Việt Nam tự thiết kế và thi công. Khi cầu không quay (Hình 10a), mặt cầu liền mạch nên các phương tiện có thể đi lại giữa hai đầu cầu. Khi cầu quay (Hình 10b) để các tàu, thuyền có thể đi qua thì mặt cầu không còn liền mạch nữa, các phương tiện không thể đi qua giữa hai đầu cầu.
Kiến thức gì trong toán học thể hiện chuyển động có đường đi là đường liền mạch?
-
Hoạt động 1 trang 73 SGK Toán 11 Cánh diều Tập 1 - CD
Quan sát đồ thị hàm số f(x) = x ở Hình 11.
a) Tính f(x)?
b) So sánh f(x)và f(1)?
-
Luyện tập 1 trang 74 SGK Toán 11 Cánh diều Tập 1 - CD
Xét tính liên tục của hàm số \(f(x) = x^3 + 1\) tại \(x_0 = 1\)?
-
Hoạt động 2 trang 74 SGK Toán 11 Cánh diều Tập 1 - CD
Cho hàm số f(x) = x + 1 với x ∈ ℝ.
a) Giả sử x0 ∈ ℝ. Hàm số f(x) có liên tục tại điểm x0 hay không?
b) Quan sát đồ thị hàm số f(x) = x + 1 với x ∈ ℝ (Hình 13), nêu nhận xét về đặc điểm của đồ thị hàm số đó?
-
Luyện tập 2 trang 75 SGK Toán 11 Cánh diều Tập 1 - CD
Hàm số \(f(x)=\left\{ \begin{matrix} x-1,x<2 \\ -x,x\ge 2 \\ \end{matrix} \right.\). Có liên tục trên ℝ hay không?
-
Hoạt động 3 trang 75 SGK Toán 11 Cánh diều Tập 1 - CD
Quan sát đồ thị các hàm số: y = x2 – 4x + 3 (Hình 14a); y = (Hình 14b); y = tanx (Hình 14c) và nêu nhận xét về tính liên tục của mỗi hàm số đó trên từng khoảng của tập xác định?
-
Luyện tập 3 trang 76 SGK Toán 11 Cánh diều Tập 1 - CD
Hàm f(x) = có liên tục trên mỗi khoảng (– ∞; 8), (8; + ∞) hay không?
-
Hoạt động 4 trang 76 SGK Toán 11 Cánh d - CDiều Tập 1
Cho hai hàm số f(x) = x3 + x và g(x) = x2 + 1 (x ∈ ℝ). Hãy cho biết:
a) Hai hàm số f(x), g(x) có liên tục tại x = 2 hay không?
b) Các hàm số f(x) + g(x); f(x) – g(x); f(x).g(x); có liên tục tại x = 2 hay không?
-
Luyện tập 4 trang 76 SGK Toán 11 Cánh diều Tập 1 - CD
Xét tính liên tục của hàm số f(x) = sinx + cosx trên ℝ.
-
Bài 1 trang 77 SGK Toán 11 Cánh diều Tập 1 - CD
Dùng định nghĩa xét tính liên tục của hàm số f(x) = 2x3 + x + 1 tại điểm x = 2?
-
Bài 2 trang 77 SGK Toán 11 Cánh diều Tập 1 - CD
Trong các hàm số có đồ thị ở Hình 15a, 15b, 15c, hàm số nào liên tục trên tập xác định của hàm số đó? Giải thích.
-
Bài 3 trang 77 SGK Toán 11 Cánh diều Tập 1 - CD
Bạn Nam cho rằng: “Nếu hàm số y = f(x) liên tục tại điểm x0, còn hàm số y = g(x) không liên tục tại x0, thì hàm số y = f(x) + g(x) không liên tục tại x0”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.
-
Bài 4 trang 77 SGK Toán 11 Cánh diều Tập 1 - CD
Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:
a) f(x) = x2 + sinx;
b) g(x) = x4 – x2 + ;
c) h(x) = .
-
Bài 5 trang 77 SGK Toán 11 Cánh diều Tập 1 - CD
Cho hàm số \(f(x)=\left\{ \begin{matrix} {{x}^{2}}+x+1,x\ne 4 \\ 2a+1,x=4 \\ \end{matrix} \right.\)
a) Với a = 0, xét tính liên tục của hàm số tại x = 4?
b) Với giá trị nào của a thì hàm số liên tục tại x = 4?
c) Với giá trị nào của a thì hàm số liên tục trên tập xác định của nó?
-
Bài 6 trang 77 SGK Toán 11 Cánh diều Tập 1 - CD
Hình 16 biểu thị độ cao h(m) của một quả bóng đá lên theo thời gian t(s), trong đó h(t) = – 2t2 + 8t.
a) Chứng tỏ hàm số h(t) liên tục trên tập xác định?
b) Dựa vào đồ thị hãy xác định ?
-
Bài tập 26 trang 80 SBT Toán 11 Tập 1 Cánh diều - CD
Phát biểu nào sau đây là đúng?
A. Hàm số \(y = f\left( x \right)\) liên tục tại \(x = a\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right)\).
B. Hàm số \(y = f\left( x \right)\) liên tục tại \(x = a\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\).
C. Hàm số \(y = f\left( x \right)\) liên tục tại \(x = a\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\).
D. Hàm số \(y = f\left( x \right)\) liên tục tại \(x = a\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right)\).
-
Bài tập 27 trang 81 SBT Toán 11 Tập 1 Cánh diều - CD
Cho đồ thị hàm số \(y = f\left( x \right)\) trong hình dưới đây. Phát biểu nào sau đây là SAI?
A. Hàm số \(y = f\left( x \right)\) không liên tục tại \(x = 1\).
B. Hàm số \(y = f\left( x \right)\) không liên tục tại \(x = 3\).
C. Hàm số \(y = f\left( x \right)\) không liên tục tại \(x = 5\).
D. Hàm số \(y = f\left( x \right)\) không liên tục tại \(x = 0\).
-
Bài tập 28 trang 81 SBT Toán 11 Tập 1 Cánh diều - CD
Quan sát đồ thị hàm số trong hình dưới đây và cho biết hàm số đó có liên tục:
a) Tại \(x = \frac{5}{3}\) hay không.
b) Trên khoảng \(\left( { - \infty ;0} \right)\) hay không.
-
Bài tập 29 trang 81 SBT Toán 11 Tập 1 Cánh diều
Xét tính liên tục của các hàm số sau:
a) \(f\left( x \right) = - {x^2} + \cos x\)
b) \(g\left( x \right) = 3{x^3} + 2 - \frac{3}{{x + 2}}\)
c) \(h\left( x \right) = \frac{{2x + 5}}{{x + 2}} + \frac{{3x - 1}}{{2x - 4}}\)
-
Bài tập 30 trang 81 SBT Toán 11 Tập 1 Cánh diều - CD
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{ }}\left( {x \ge 1} \right)\\x + a{\rm{ }}\left( {x < 1} \right)\end{array} \right.\)
a) Với \(a = 2\), xét tính liên tục của hàm số tại \(x = 1\).
b) Tìm \(a\) để hàm số liên tục trên \(\mathbb{R}\).
-
Bài tập 31 trang 81 SBT Toán 11 Tập 1 Cánh diều - CD
Theo quyết định số 2019/QĐ-BĐVN ngày 01/11/2018 của Tổng công ty Bưu điện Việt Nam, giá cước dịch vụ Bưu chính phổ cập đối với dịch vụ thư cơ bản và bưu thiếp trong nước có khối lượng đến 250 g như trong bảng sau:
a) Hãy biểu diễn số tiền phải trả khi sử dụng dịch vụ thư cơ bản và bưu thiếp theo khối lượng của thư cơ bản và bưu thiếp.
b) Hàm số trên có liên tục trên tập xác định hay không?