ON
YOMEDIA
VIDEO_3D

Bài tập 43 trang 216 SGK Toán 11 NC

Bài tập 43 trang 216 SGK Toán 11 NC

Chứng minh rằng với mọi n ≥ 1, ta có:

a) Nếu \(f(x) = \frac{1}{x}\) thì \({f^{(n)}}(x) = \frac{{{{( - 1)}^n}.n!}}{{{x^{n + 1}}}}\)

b) Nếu f(x) = cos x thì \({f^{(4n)}}(x) = cosx.\)

c) Nếu f(x) = sin ax (a là hằng số) thì \({f^{(4n)}}(x) = {a^{4n}}sinax\)

ADSENSE

Hướng dẫn giải chi tiết

 
 

a) Cho \(f(x) = \frac{1}{x}(x \ne 0)\)., Ta chứng minh:

\({f^{(n)}}(x) = \frac{{{{( - 1)}^n}.n!}}{{{x^{n + 1}}}}(\forall x \ge 1)\) bằng phương pháp qui nạp

- Với n = 1, ta có: 

\({f^{(n)}}(x) = f\prime (x) =  - \frac{1}{{{x^2}}}\) và

\(\frac{{{{( - 1)}^n}.n!}}{{{x^{n + 1}}}} =  - \frac{1}{{{x^2}}}\)

Suy ra (1) đúng khi n = 1.

-  Giả sử (1) đúng cho trường hợp n = k(k ≥ 1), tức là: 

\({f^{\left( k \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^k}.k!}}{{{x^{k + 1}}}}\)

Ta phải chứng minh (1) cũng đúng cho trường hợp n = k + 1, tức là:

\({f^{\left( {k + 1} \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\)

Thật vậy, ta có:

\(\begin{array}{l}
{f^{(k + 1)}}(x) = [{f^{(k)}}(x)]\prime \\
 =  - \frac{{{{( - 1)}^k}k!.(k + 1){x^k}}}{{{x^{2(k + 1)}}}}\\
 = \frac{{{{( - 1)}^{k + 1}}.(k + 1)!}}{{{x^{k + 2}}}}
\end{array}\)

b) Cho f(x) = cosxx. Chứng minh công thức :

\({f^{(4n)}}(x) = cosx(\forall n \ge 1)(2)\) bằng phương pháp qui nạp:

Ta có: f′(x) = −sinx; f"(x) = −cosx

\(f'''\left( x \right) = \sin x;{f^{\left( 4 \right)}}\left( x \right) = \cos x\)

+ Với n = 1 thì f(4n)(x) = f(4)(x) = cosx

Suy ra (2) đúng khi n = 1

+ Giả sử (2) đúng cho trường hợp n = k (k ≥ 1), tức là :  f(4k) (x) = cosx,

Ta phải chứng minh (2) cũng đúng cho trường hợp n = k + 1, tức là phải chứng minh ::

\({f^{(4(k + 1))}}(x) = cosx(hay\,{f^{(4k + 4)}}(x) = cosx)\)

Thật vậy,

\(\begin{array}{l}
{f^{(4k)}}(x) = \cos x \Rightarrow {f^{(4k + 1)}}(x) =  - \sin x\\
{f^{(4k + 2)}}(x) =  - \cos x\\
{f^{(4k + 3)}}(x) = \sin x\\
{f^{(4k + 4)}}(x) = \cos x
\end{array}\)

c) Ta có:

\(\begin{array}{l}
f\prime (x) = a\cos ax\\
f(x) =  - {a^2}\sin ax\\
{f^{(3)}}(x) =  - {a^3}\cos ax\\
{f^{(4)}}(x) = {a^4}\sin ax
\end{array}\)

Với n = 1 ta có f(4)(x) = a4sinax,, đẳng thức đúng với n = 1

Giả sử đẳng thức đúng với n = k tức là :  f(4k)(x) = a4ksinax

Với n = k + 1 ta có: 

\({f^{(4k + 4)}}(x) = {({f^{(4k)}})^{(4)}}(x) = {({a^{4k}}\sin ax)^{(4)}}\)

Do \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\)

\(\begin{array}{l}
{f^{(4k + 1)}}(x) = {a^{4k + 1}}\cos ax\\
{f^{(4k + 2)}}(x) =  - {a^{4k + 2}}\sin ax\\
{f^{(4k + 3)}}(x) =  - {a^{4k + 3}}\cos ax\\
{f^{(4k + 4)}}(x) = {a^{4k + 4}}\sin ax
\end{array}\)

Vậy đẳng thức đúng với n = k + 1, do đó đẳng thức đúng với mọi n.

-- Mod Toán 11 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 43 trang 216 SGK Toán 11 NC HAY thì click chia sẻ 
AMBIENT

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

 

AMBIENT
1=>1
Array
(
    [0] => Array
        (
            [banner_bg] => 
            [banner_picture] => 894_1634779022.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://kids.hoc247.vn/tieuhoc247
            [banner_startdate] => 2021-09-01 00:00:00
            [banner_enddate] => 2021-10-31 23:59:59
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)