Bài tập 31 trang 31 SGK Hình học 11 NC
Chứng tỏ rằng nếu phép đồng dạng F biến tam giác ABC thành tam giác A'B'C' thì trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC lần lượt biến thành trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác A'B'C'
Hướng dẫn giải chi tiết
Gọi D là trung điểm của đoạn thẳng BC thì phép đồng dạng F biến điểm D thành trung điểm D’ của đoạn thẳng B’C’, và vì thế trung tuyến AD của tam giác ABC biến thành trung tuyến A’D’ của tam giác A’B’C’. Đối với các đường trung tuyến còn lại cũng vậy
Vì trọng tâm tam giác là giao điểm của các đường trung tuyến nên trọng tâm tam giác ABC biến thành trọng tâm tam giác A’B’C’
Gọi AH là đường cao của tam giác ABC (H ∈ BC)
Khi đó phép đồng dạng F biến thành đường thẳng AH thành đường thẳng A’H’
Vì AH ⊥ BC nên A’H ⊥ B’C’, nói cách khác A’H’ là đường cao của tam giác A’B’C’. Đối với các đường cao khác cũng thế
Vì trực tâm tam giác là giao điểm của các đường cao nên trực tâm tam giác ABC biến thành trực tâm tam giác A’B’C’.
Nếu điểm O biến thành điểm O’ thì O’A’ = O’B’ = O’C’ = kOA = kOB = kOC, do đó O’ là tâm đường tròn ngoại tiếp tam giác A’B’C’
-- Mod Toán 11 HỌC247
-
Xét phép đồng dạng biến hình thang HICD thành hình thang LJIK, tìm khẳng định định đúng
bởi Vy Bùi 13/10/2019
Theo dõi (0) 1 Trả lời -
Bài 1.29 trang 38 sách bài tập Hình học 11
bởi Mai Vàng 10/10/2018
Bài 1.29 (Sách bài tập - trang 38)Chứng minh rằng hai đa giác đều có cùng số cạnh luôn đồng dạng với nhau ?
Theo dõi (0) 1 Trả lời