YOMEDIA
NONE

Bài tập 3 trang 31 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 3 trang 31 SBT Toán 11 Tập 1 Chân trời sáng tạo

Giải các phương trình lượng giác sau:

a) cosx+π4+cosπ4x=0;

b) 2cos2x + 5sinx ‒ 4 = 0;

c) cos3xπ4+2sin2x1=0.

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 3

a) Ta có: cosx+π4+cosπ4x=0

cosx+π4=cosπ4xcosx+π4=cos3π4+x

x+π4=3π4+x+k2π,k hoặc x+π4=3π4x+k2π,k

x=π2+kπ,k

Vậy phương trình có các nghiệm là x=π2+kπ,k

b) Ta có: 2cos2x + 5sinx ‒ 4 = 0

⇔ 2(1 ‒ sin2x) + 5sinx ‒ 4 = 0

⇔ ‒2sin2x + 5sinx ‒ 2 = 0

⇔ sinx = 2 (vô nghiệm) hoặc sinx = 12

⇔ sinx = 12 x=π6+k2π,k hoặc x=ππ6+k2π,k

x=π6+k2π,k hoặc x=5π6+k2π,k

Vậy phương trình có các nghiệm x=π6+k2π,kx=5π6+k2π,k

c) Ta có: cos3xπ4+2sin2x1=0

cos3xπ4=12sin2xcos3xπ4=cos2x

3xπ4=2x+k2π,k hoặc 3xπ4=2x+k2π,k

x=π4+k2π,k hoặc x=π20+k2π5,k

Vậy phương trình có các nghiệm là x=π4+k2π,kx=π20+k2π5,k

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3 trang 31 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON