YOMEDIA
NONE

Bài tập 16 trang 19 SBT Toán 11 Tập 2 Cánh diều - CD

Bài tập 16 trang 19 SBT Toán 11 Tập 2 Cánh diều

Một lớp học có 40 học sinh, trong đó có 25 học sinh thích chơi cầu lông, 20 học sinh thích chơi bóng bàn, 12 học sinh thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên 1 học sinh. Tính xác suất của các biến cố:

a) A: “Học sinh được chọn thích chơi cầu lông”;

b) B: “Học sinh được chọn thích chơi bóng bản”;

c) C: “Học sinh được chọn vừa thích chơi cầu lông vừa thích chơi bóng bàn”;

d) D: “Học sinh được chọn thích chơi ít nhất một trong hai môn thể thao là câu lông hoặc bóng bàn”.

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 16

Mỗi cách chọn 1 học sinh từ 40 học sinh trong lớp cho ta một tổ hợp chập 1 của 40 phần tử.

Do đó, không gian mẫu Ω gồm các phần tử chập 1 của 40 phần tử và \(n\left( \Omega \right) = C_{40}^1 = 40.\)

a) Số các kết quả thuận lợi cho biến cố A là \(n\left( A \right) = C_{25}^1 = 25.\)

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{25}}{{40}} = \frac{5}{8}.\)

b) Số các kết quả thuận lợi cho biến cố B là \(n\left( B \right) = C_{20}^1 = 20.\)

Xác suất của biến cố B là: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{20}}{{40}} = \frac{1}{2}.\)

c) Số các kết quả thuận lợi cho biến cố C là \(n\left( C \right) = C_{12}^1 = 12.\)

Xác suất của biến cố C là: \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{40}} = \frac{3}{{10}}.\)

d) Ta thấy \(D = A \cup B,{\rm{ }}C = A \cap B.\)

\( \Rightarrow P\left( D \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) = \frac{5}{8} + \frac{1}{2} - \frac{3}{{10}} = \frac{{33}}{{40}}.\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 16 trang 19 SBT Toán 11 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON