Bài tập 1 trang 121 SBT Toán 11 Tập 1 Chân trời sáng tạo
Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác ABD và ACD. Chứng minh G1G2 song song với các mặt phẳng (ABC) và (BCD)?
Hướng dẫn giải chi tiết Bài tập 1
Gọi M, N lần lượt là trung điểm của DB, DC.
Xét ∆DBC có M, N lần lượt là trung điểm của DB, DC nên MN là đường trung bình của ∆DBC, suy ra MN // BC.
Do G1 là trọng tâm ∆ABD nên ;
G2 là trọng tâm ∆ACD nên .
Do đó .
Trong tam giác AMN, ta có nên G1G2 // MN (định lí Thalès đảo).
Mà MN // BC (chứng minh trên).
Suy ra G1G2 // MN // BC, mà BC ⊂ (ABC), MN ⊂ (BCD).
Suy ra G1G2 song song với các mặt phẳng (ABC) và (BCD).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 5 trang 112 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 112 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 2 trang 121 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 122 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 122 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 5 trang 122 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST