YOMEDIA
NONE

Luyện tập 3 trang 51 SGK Toán 10 Cánh diều tập 2 - CD

Luyện tập 3 trang 51 SGK Toán 10 Cánh diều tập 2

Có 15 bông hoa màu trắng và 15 bông hoa màu vàng. Người ta chọn ra đồng thời 10 bông hoa. Tính xác suất của biến cố “Trong 10 bông hoa được chọn ra có ít nhất một bông màu trắng”.

ATNETWORK

Hướng dẫn giải chi tiết Luyện tập 3

Phương pháp giải

Cho A là một biến cố. Khi đó biến cổ “Không xảy ra A”, kí hiệu là \(\overline A \), được gọi là biến cố đối của A.

\(\overline A  = \Omega \backslash A;\;\;\;\;\;\;\;\;\;\;P\left( {\overline A } \right) + P\left( A \right) = 1\) 

Hướng dẫn giải

Mỗi lần lấy ngẫu nhiên ra 10 bông hoa từ 30 bông hoa ta có một tổ hợp chập 10 của 30. Do đó số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_{30}^{10}\) (phần tử)

Gọi A là biến cố “Trong 10 bông hoa được chọn ra có ít nhất một bông màu trắng”

Vậy \(\overline A \)  là biến cố “Trong 10 bông hoa được chọn ra đều là hoa màu vàng”

Mỗi cách lấy ra đồng thời 10 bông hoa từ 15 bông hoa màu vàng là một tổ hợp chập 10 của 15 phần tử. Vậy số phần tử của biến cố \(\overline A \) là : \(n\left( {\overline A } \right) = C_{15}^{10}\) ( phần tử)

Xác suất của biến cố \(\overline A \) là: \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{1}{{10005}}\)

Xác suất của biến cố A là: \(P\left( A \right) = 1 - P\left( {\overline A } \right) = \frac{{10004}}{{10005}}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Luyện tập 3 trang 51 SGK Toán 10 Cánh diều tập 2 - CD HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
NONE
ON