Giải bài 36 trang 48 SBT Toán 10 Cánh diều tập 2
Một giải đá bóng gồm 16 đội, trong đó có 4 đội của nước V. Ban tổ chức bốc thăm ngẫu nhiên để chia thành 4 bảng đấu A, B, C, D, mỗi bảng đấu có 4 đội. Tính xác suất của biến cố “Bốn đội của nước V ở 4 bảng đấu khác nhau”
Hướng dẫn giải chi tiết Bài 36
Phương pháp giải
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)
Lời giải chi tiết
+ Xếp 16 đội vào 4 bảng đấu, mỗi bảng 4 người
Chọn 4 người từ 16 người, sau đó chọn 4 người từ 12 người còn lại, tiếp theo chọn 4 người từ 8 người còn lại.
\( \Rightarrow n\left( \Omega \right) = C_{16}^4.C_{12}^4.C_8^4\)
+ Gọi A là biến cố “Bốn đội của nước V ở 4 bảng đấu khác nhau”
+ Số cách xếp 4 đội của nước V vào bảng đấu là \(4!\)
+ Số cách xếp 12 đội còn lại vào 4 bảng đấu: \(C_{12}^3.C_9^3.C_6^3\)
\( \Rightarrow n\left( A \right) = 24.C_{12}^3.C_9^3.C_6^3\)
Vậy xác suất của biến cố A là:
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{24.C_{12}^3.C_9^3.C_6^3}}{{C_{16}^4.C_{12}^4.C_8^4}} = \frac{{64}}{{455}}\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.