YOMEDIA
NONE

Giải bài 2 trang 52 SGK Toán 10 Cánh diều tập 2 - CD

Giải bài 2 trang 52 SGK Toán 10 Cánh diều tập 2

Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4 hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.

a) Tính số phần tử của không gian mẫu.

b) Xác định các biến cố sau:

A: “Tổng các số trên ba tấm bìa bằng 9”;

B: “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp”.

c) Tính P(A), P(B).

ATNETWORK

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

a) Rút ngẫu nhiên đồng thời 3 tấm bìa từ 4 tấm bìa ở trong hộp \( \Rightarrow \)Sử dụng công thức tổ hợp

b) Liệt kê các trường hợp có lợi cho các biến cố

c) Xác suất của biến cố là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}}\)

Hướng dẫn giải

a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 3 của 4 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_4^3\) ( phần tử)

b) +) Sự kiện “Tổng các số trên ba tấm bìa bằng 9” tương ứng với biến cố \(A = \left\{ {\left( {4;3;2} \right)} \right\}\)

+) Sự kiện “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp” tương ứng với biến cố \(B = \left\{ {\left( {1;2;3} \right),\left( {2;3;4} \right)} \right\}\)

c) +) Ta có: \(n\left( A \right) = 1\),\(n\left( B \right) = 2\)

+) Vậy xác suất của biến cố A và B là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{4};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 2 trang 52 SGK Toán 10 Cánh diều tập 2 - CD HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON