YOMEDIA
NONE

Giải bài 8 trang 36 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 36 SBT Toán 10 Chân trời sáng tạo tập 1

Một học sinh dự dịnh làm các bình hoa bằng giấy để bán trong một hội chợ gây quỹ từ thiện. Cần 1 giờ để làm một bình hoa loại nhỏ và sẽ bán được 100 nghìn đồng, 90 phút để làm một bình hoa loại lớn và sẽ bán được 200 nghìn đồng. Học sinh này chỉ thu xếp được 15 giờ nghỉ để làm và ban tổ chức yêu cầu phải làm ít nhất 12 bình hoa. Hãy chi biết bạn ấy cần làm bao nhiêu bình hoa mỗi loại để gây quỹ được nhiều nhất.

ATNETWORK

Hướng dẫn giải chi tiết Bài 8

Phương pháp giải

Gọi x và y lần lượt là số bình hoa loại nhỏ và loại lớn mà bạn học sinh có thể làm được (x ≥ 0, y ≥ 0).

Đổi 90 phút = 1,5 giờ.

Ban tổ chức yêu cầu phải làm ít nhất 12 bình hoa nên x + y ≥ 12.

Số giờ để làm x bình hoa loại nhỏ là x (giờ), số giờ để làm y bình hoa loại lớn là 1,5y (giờ).

Vì học sinh này chỉ thu xếp được 15 giờ nghỉ để làm nên x + 1,5y ≤ 15.

=> Hệ bất phương trình cần tìm 

Biểu diễn miền nghiệm của hệ bất phương trình

Lời giải chi tiết

Ta có hệ bất phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}
{x + y \ge 12}\\
{x + 1,5y \le 15}\\
{x \ge 0}\\
{y \ge 0}
\end{array}} \right.\)

Biểu diễn miền nghiệm của hệ bất phương trình ta được miền tam giác ABC có tọa độ các đỉnh là A(12; 0), B(15; 0), C(6; 6) (phần không gạch chéo kể cả bờ trong hình dưới).

Số tiền gây quỹ là F = 100x + 200y.

Người ta chứng minh được rằng F đạt GTLN tại các đỉnh của tam giác ABC.

Ta có: F(12; 0) = 100 . 12 + 200 . 0 = 1 200

F(15; 0) = 100 . 15 + 200 . 0 = 1 500

F(6; 6) = 100 . 6 + 200 . 6 = 1 800.

Do đó, F đạt GTLN là 1 800 nghìn đồng tại đỉnh C(6; 6).

Vậy bạn đó cần làm 6 cái bình hoa mỗi loại để gây được quỹ nhiều tiền nhất.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 8 trang 36 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON