YOMEDIA
NONE

Giải bài 8.21 trang 58 SBT Toán 10 Kết nối tri thức tập 2 - KNTT

Giải bài 8.21 trang 58 SBT Toán 10 Kết nối tri thức tập 2

Cho số nguyên dương \(n \ge 4\). Người ta đánh dấu n điểm phân biệt trên một đường tròn. Biết rằng số các hình tam giác với các đỉnh là các điểm được đánh dấu thì bằng số các tứ giác với các đỉnh là các điểm được đánh dấu. Giá trị của n là

A. 4

B. 6

C. 7

D. 9

ATNETWORK

Hướng dẫn giải chi tiết Bài 8.21

Phương pháp giải

Áp dụng công thức tổ hợp \(C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}} = \frac{{n.(n - 1)...(n - k + 1)}}{{k!}}\)

Lời giải chi tiết

Mỗi tam giác được xác định bởi ba điểm đánh dấu nên số tam giác với n điểm được đánh dấu là \(C_n^3\).

 Tương tự số tứ giác với n điểm được đánh dấu là \(C_n^4\)

 Số tam giác bằng số tứ giác nên ta có: \(\begin{array}{l}C_n^3 = C_n^4 \Leftrightarrow \frac{{n.(n - 1).(n - 2)}}{{3!}} = \frac{{n.(n - 1).(n - 2).(n - 3)}}{{4!}}\\ \Leftrightarrow 1 = \frac{{n - 3}}{4}\\ \Leftrightarrow n = 7\end{array}\)

Chọn C.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 8.21 trang 58 SBT Toán 10 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON