YOMEDIA
NONE

Giải bài 7.49 trang 49 SBT Toán 10 Kết nối tri thức tập 2 - KNTT

Giải bài 7.49 trang 49 SBT Toán 10 Kết nối tri thức tập 2

Cho đường thẳng \(d:4x + 3y - 2 = 0\) và đường thẳng \(k:\left\{ \begin{array}{l}x =  - 1 + 3t\\y = 2 - 4t\end{array} \right.\). Vị trí tương đối của hai đường thẳng d và k là:

A. Trùng nhau     

B. Song song       

C. Cắt nhau nhưng không vuông góc 

D. Vuông góc

ATNETWORK

Hướng dẫn giải chi tiết Bài 7.49

Phương pháp giải

Xét vị trí các đường thẳng qua các cặp vector chỉ phương và vector pháp tuyến của mỗi đường thẳng

Lời giải chi tiết

+ \(d:4x + 3y - 2 = 0 \Rightarrow \overrightarrow {{n_d}}  = \left( {4;3} \right)\)

+ \(k:\left\{ \begin{array}{l}x =  - 1 + 3t\\y = 2 - 4t\end{array} \right. \Rightarrow \overrightarrow {{v_k}}  = \left( {3; - 4} \right) \Rightarrow \overrightarrow {{n_k}}  = \left( {4;3} \right) = \overrightarrow {{n_d}} \)

\(\Rightarrow \) Hai đường thẳng song song hoặc với nhau

Xét \(A\left( { - 1;2} \right) \in k\) , ta thấy \(A \in d\) \(\Rightarrow \) Hai đường thẳng trùng nhau

Chọn A.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 7.49 trang 49 SBT Toán 10 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON