Giải bài 7.57 trang 50 SBT Toán 10 Kết nối tri thức tập 2
Cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 4x + 6y - 12 = 0\)
a) Tìm tọa độ I và bán kính R của \(\left( C \right)\)
b) Chứng minh rằng điểm \(M\left( {5;1} \right)\) thuộc \(\left( C \right)\). Viết phương trình tiếp tuyến d của \(\left( C \right)\) tại M
Hướng dẫn giải chi tiết Bài 7.57
Phương pháp giải
+ Phương trình đường tròn \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) có tâm \(I\left( {a;b} \right)\) và bán kính R
Lời giải chi tiết
a) \({x^2} + {y^2} - 4x + 6y - 12 = 0 \Rightarrow {\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25\)
\( \Rightarrow I\left( {2; - 3} \right),R = 5\)
b) \(\overrightarrow {IM} = \left( {3;4} \right) \Rightarrow IM = 5 = R \Rightarrow M \in \left( C \right)\)
Phương trình tiếp tuyến d của \(\left( C \right)\) tại M có \(\overrightarrow n = \overrightarrow {IM} = \left( {3;4} \right)\) và đi qua \(M\left( {5;1} \right)\) là: \(3\left( {x - 5} \right) + 4\left( {y - 1} \right) = 0 \Rightarrow 3x + 4y - 19 = 0\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 7.55 trang 49 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.56 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.58 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.59 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.60 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.61 trang 50 SBT Toán 10 Kết nối tri thức tập 2 - KNTT