YOMEDIA
NONE

Giải bài 6 trang 15 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 15 SGK Toán 10 Chân trời sáng tạo tập 1

Cho các mệnh đề sau:

P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”

Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”

R: “Có số thực x sao cho \({x^2} + 2x - 1 = 0\)”

a) Xét tính đúng sai của mỗi mệnh đề trên.

b) Sử dụng kí hiệu \(\forall ,\exists \) để viết lại các mệnh đề đã cho.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Mệnh đề \(\forall x \in M,P(x)\) đúng với mọi \({x_0} \in M\), P(x) là mệnh đề đúng.

Mệnh đề \(\exists x \in M,P(x)\) đúng nếu có \({x_0} \in M\),sao cho P(x) là mệnh đề đúng.

Lời giải chi tiết

a)

Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).

Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.

Mệnh đề R đúng vì \(x =  - 1 + \sqrt 2  \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)

b) Có thể viết lại các mệnh đề trên như sau:

P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”

Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”

R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 15 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON