Giải bài 50 trang 62 SBT Toán 10 Cánh diều tập 1
Vẽ đồ thị hàm số của mỗi hàm số sau:
a) \(y = 2{x^2} - 8x + 1\)
b) \(y = - {x^2} + 4x - 3\)
Hướng dẫn giải chi tiết Bài 50
Phương pháp giải
Xác định đỉnh của parabol \(y = a{x^2} + bx + c\): \(\left( {\frac{{ - b}}{{2a}}; - \frac{\Delta }{{4a}}} \right)\) và trục đối xứng của đường thẳng \(x = - \frac{b}{{2a}}\)
Lời giải chi tiết
a) Hàm số \(y = 2{x^2} - 8x + 1\)có \(a = 2 > 0;b = - 8;c = 1\) và \( - \frac{b}{{2a}} = - \frac{{ - 8}}{{2.2}} = 2\)
+ Đỉnh của parabol là \(I\left( {2; - \frac{{{{\left( { - 8} \right)}^2} - 4.2.1}}{{4.2}}} \right) = \left( {2; - 7} \right)\)
+ Trục đối xứng \(x = 2\)
+ Giao điểm với trục tung là A(0;1)
+ Điểm đối xứng với A(0;1) qua trục đối xứng \(x = 2\) là B(4;1)
+ Lấy các điểm C(1; -5) và D(3;-5)
Từ đó ta có đồ thị hàm số:
b) Hàm số \(y = - {x^2} + 4x - 3\) có \(a = - 1;b = 4;c = - 3\) và \( - \frac{b}{{2a}} = - \frac{4}{{2.( - 1)}} = 2\)
+ Đỉnh của parabol là \(I\left( {2; - {2^2} + 4.2 - 3} \right) = \left( {2;1} \right)\)
+ Trục đối xứng \(x = 2\)
+ Giao điểm với trục tung là A(0;-3)
+ Điểm đối xứng với A(0;-3) qua trục đối xứng \(x = 2\) là B(4;-3)
+ Giao điểm với trục hoành là C(1;0) và D(3;0)
Từ đó ta có đồ thị hàm số:
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 48 trang 62 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 49 trang 62 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 51 trang 62 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 52 trang 62 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 53 trang 62 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 54 trang 63 SBT Toán 10 Cánh diều tập 1 - CD