YOMEDIA
NONE

Giải bài 48 trang 62 SBT Toán 10 Cánh diều tập 1 - CD

Giải bài 48 trang 62 SBT Toán 10 Cánh diều tập 1

Cho hàm số \(y = f\left( x \right)\) có đồ thị ở Hình 24

a) Chỉ ra khoảng đồng biến và khoảng nghịch biến của hàm số \(y = f\left( x \right)\)

b) Nêu tung độ giao điểm của đồ thị hàm số \(y = f\left( x \right)\) với trục \(Oy\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 48

Phương pháp giải

Quan sát đồ thị hàm số, trên \((a;b)\)

+ Đồ thị hàm số đi lên (từ trái qua phải) thì hàm số đồng biến trên \((a;b)\)

+ Đồ thị hàm số đi xuống (từ trái qua phải) thì hàm số nghịch biến trên \((a;b)\)

Lời giải chi tiết

a) Quan sát đồ thị hàm số, ta thấy:

+ Đồ thị hàm số đi lên (từ trái qua phải) ứng với \(x \in \left( { - \infty ;0} \right) \cup (2; + \infty )\)

+ Đồ thị hàm số đi xuống (từ trái qua phải) ứng với \(x \in (0;2)\)

Do đó hàm số đồng biến trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\)và nghịch biến trên khoảng \(\left( {0;2} \right)\).

b) Giao điểm của hàm số với trục Oy có hoành độ là \(x = 0\)

Do đó tung độ của điểm đó là: \(y = f(0) = 2\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 48 trang 62 SBT Toán 10 Cánh diều tập 1 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON