Giải bài 4 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2
Giải các phương trình sau:
a) \(\sqrt { - 7{x^2} - 60x + 27} + 3\left( {x - 1} \right) = 0\)
b) \(\sqrt {3{x^2} - 9x - 5} + 2x = 5\)
c) \(\sqrt { - 2x + 8} - x + 6 = x\)
Hướng dẫn giải chi tiết bài 4
Phương pháp giải
Bước 1: Đưa về dạng \(\sqrt {f(x)} = g(x)\) rồi bình phương hai vế
Bước 2: Rút gọn và giải phương trình bậc hai đó
Bước 3: Thay nghiệm vừa tìm được vào phương trình ban đầu và kết luận
Lời giải chi tiết
a) Xét phương trình:
\(\begin{array}{l}\sqrt { - 7{x^2} - 60x + 27} + 3\left( {x - 1} \right) = 0\\ \Leftrightarrow \sqrt { - 7{x^2} - 60x + 27} = - 3\left( {x - 1} \right)\\ \Rightarrow - 7{x^2} - 60x + 27 = 9{x^2} - 18x + 9\\ \Rightarrow 16{x^2} + 42x - 18 = 0\end{array}\)
\( \Rightarrow x = - 3\) hoặc \(x = \frac{3}{8}\)
Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai giá trị đều thỏa mãn
Vậy nghiệm của phương trình là \(x = - 3\) và\(x = \frac{3}{8}\)
b) Xét phương trình:
\(\begin{array}{l}\sqrt {3{x^2} - 9x - 5} + 2x = 5\\ \Leftrightarrow \sqrt {3{x^2} - 9x - 5} = 5 - 2x\\ \Rightarrow 3{x^2} - 9x - 5 = 4{x^2} - 20x + 25\\ \Rightarrow {x^2} - 11x + 30 = 0\end{array}\)
\( \Rightarrow x = 5\) hoặc \(x = 6\)
Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy không có giá trị nào thỏa mãn
Vậy phương trình đã cho vô nghiệm
c) Xét phương trình:
\(\begin{array}{l}\sqrt { - 2x + 8} - x + 6 = x\\ \Leftrightarrow \sqrt { - 2x + 8} = 2x - 6\\ \Rightarrow - 2x + 8 = 4{x^2} - 24x + 36\\ \Rightarrow 4{x^2} - 22x + 28 = 0\end{array}\)
\( \Rightarrow x = 2\) hoặc \(x = \frac{7}{2}\)
Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta chỉ có \(x = \frac{7}{2}\) thỏa mãn
Vậy phương trình đã cho có nghiệm duy nhất là \(x = \frac{7}{2}\)
-- Mod Toán 10 HỌC247
-
Hãy giải và biện luận phương trình sau theo tham số m: m(x – 4) = 5x – 2.
bởi Nguyễn Lê Thảo Trang 12/09/2022
Theo dõi (0) 1 Trả lời