YOMEDIA
NONE

Giải bài 4.1 trang 47 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.1 trang 47 SBT Toán 10 Kết nối tri thức tập 1

Cho tam giác \(ABC\). Gọi \(M\) là trung điểm của cạnh \(BC\) và \(G\) là trọng tâm của tam giác. Trong các khẳng định sau, khẳng định nào là một khẳng định đúng?

a) Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) cùng phương.

b) Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) cùng hướng.

c) Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) ngược hướng.

d) Độ dài của vectơ \(\overrightarrow {AM} \) bằng ba lần độ dài của vectơ \(\overrightarrow {MG} \).

ATNETWORK

Hướng dẫn giải chi tiết Bài 4.1

Phương pháp giải

- Sử dụng tính chất của trọng tâm tam giác

- Các định các vectơ cùng phương, cùng hướng hay ngược hướng.

Lời giải chi tiết

Xét \(\Delta ABC\) có: \(M\) là trung điểm của \(BC\)

\(G\) là trọng tâm của \(\Delta ABC\)

\( \Rightarrow \,\,AG = \frac{2}{3}GM.\)

mặt khác \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) ngược hướng

nên \(\left| {\overrightarrow {AM} } \right| = 3\left| {\overrightarrow {MG} } \right|\)

Vậy khẳng định a,c,d là khẳng định đúng còn khẳng định b là khẳng định sai.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4.1 trang 47 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON