Cho ba vectơ sau \(\overrightarrow{a},\) \(\overrightarrow{b}\), \(\overrightarrow{c}\) đều khác vec tơ \(\overrightarrow{0}\). Khẳng định "Nếu hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương với \(\overrightarrow{c}\) thì \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương" đúng hay sai
Trả lời (1)
-
Gọi theo thứ tự \({\Delta _1},{\Delta _2},{\Delta _3}\) là giá của các vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\)
\(\overrightarrow{a}\) cùng phương với \(\overrightarrow{c}\) \( \Rightarrow {\Delta _1}//{\Delta _3}\) ( hoặc \({\Delta _1} \equiv {\Delta _3}\)) (1)
\(\overrightarrow{b}\) cùng phương với \(\overrightarrow{c}\) \(\Rightarrow {\Delta _2}//{\Delta _3}\) ( hoặc \({\Delta _2} \equiv {\Delta _3}\) ) (2)
Từ (1), (2) suy ra \({\Delta _1}//{\Delta _2}\) ( hoặc \({\Delta _1} \equiv {\Delta _2}\) ), theo định nghĩa hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương.
Vậy câu a) đúng.
bởi Hương Lan 05/09/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời