YOMEDIA
NONE

Giải bài 33 trang 57 SBT Toán 10 Cánh diều tập 1 - CD

Giải bài 33 trang 57 SBT Toán 10 Cánh diều tập 1

Tìm \(m\) để phương trình \( - {x^2} + \left( {m + 2} \right)x + 2m - 10 = 0\) có nghiệm

ATNETWORK

Hướng dẫn giải chi tiết Bài 33

Phương pháp giải

Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right),\Delta  = {b^2} - 4ac\)

\(f\left( x \right) = 0\) có nghiệm \( \Leftrightarrow \Delta  \ge 0\)

Lời giải chi tiết

Hàm số \( - {x^2} + \left( {m + 2} \right)x + 2m - 10 = 0\) có:

 \(\begin{array}{l}a =  - 1 \ne 0,b = m + 2,c = 2m - 10\\ \Rightarrow \Delta  = {\left( {m + 2} \right)^2} - 4\left( { - 1} \right)\left( {2m - 10} \right)\end{array}\)

+ Phương trình \(f\left( x \right) =  - {x^2} + \left( {m + 2} \right)x + 2m - 10 = 0\) có nghiệm \( \Leftrightarrow \Delta  \ge 0\)

\( \Leftrightarrow {m^2} + 12m - 36 \ge 0\)

+ Giải bất phương trình \({m^2} + 12m - 36 \ge 0\)

Tam thức bậc hai \({x^2} + 12x - 36\) có hai nghiệm \({x_1} =  - 6 - 6\sqrt 2 ;{x_2} =  - 6 + 6\sqrt 2 \) và có hệ số \(a = 1 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \({x^2} + 12x - 36\) mang dấu “+” là \(\left( { - \infty ; - 6 - 6\sqrt 2 } \right] \cup \left[ { - 6 + 6\sqrt 2 ; + \infty } \right)\)

Do đó tập nghiệm của BPT \({m^2} + 12m - 36 \ge 0\) là \(\left( { - \infty ; - 6 - 6\sqrt 2 } \right] \cup \left[ { - 6 + 6\sqrt 2 ; + \infty } \right)\)

Vậy \(m \in \left( { - \infty ; - 6 - 6\sqrt 2 } \right] \cup \left[ { - 6 + 6\sqrt 2 ; + \infty } \right)\) thì phương trình trên có nghiệm

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 33 trang 57 SBT Toán 10 Cánh diều tập 1 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON