Giải bài 3 trang 17 SGK Toán 10 Chân trời sáng tạo tập 2
Cho tam giác ABC vuông tại A có AB ngắn hơn AC là 2 cm.
a) Biểu diễn độ dài cạnh huyền BC theo AB
b) Biết chu vi của tam giác ABC là 24 cm. Tính độ dài ba cạnh của tam giác đó.
Hướng dẫn giải chi tiết Bài 3
Phương pháp giải
a) Bước 1: Đặt độ dài cạnh AB là x (\(x > 0\)), biểu diễn AC theo AB
Bước 2: Áp dụng định lý Pitago biểu diễn cạnh BC
b) Bước 1: Lập biểu thức tính chu vi của tam giác
Bước 2: Giải phương trình vừa tìm được
Lời giải chi tiết
a) Đặt độ dài cạnh AB là x (\(x > 0\))
Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)
Áp dụng định lý pitago trong tam giác vuông ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}} = \sqrt {2{x^2} + 4x + 4} \)
b) Chu vi của tam giác là \(C = AB + AC + BC\)
\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4} = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)
Theo giả thiết ta có
\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4} = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4} = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)
\( \Rightarrow x = 6\) hoặc \(x = 40\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4} = 22 - 2x\) ta thấy chỉ có \(x = 6\) thỏa mãn phương trình
Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)
-- Mod Toán 10 HỌC247
-
Thực hiện giải phương trình: \(\sqrt{2x + 5} = 2\).
bởi Hoa Hong 11/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 1 trang 17 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 17 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 17 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST