YOMEDIA
NONE

Giải bài 1 trang 45 SGK Toán 10 Cánh diều tập 2 - CD

Giải bài 1 trang 45 SGK Toán 10 Cánh diều tập 2

Tung một đồng xu hai lần liên tiếp. Tính xác suất của biến cố “Kết quả của hai lần tung là khác nhau”.

ATNETWORK

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

+) Bước 1: Tính số phần tử của không gian mẫu “\(n\left( \Omega  \right)\)” và số phần tử của kết quả có lợi cho biến cố “\(n\left( A \right)\)”

+) Bước 2: Xác suất của biến cố là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)

Hướng dẫn giải

+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega  = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega  \right) = 4\)

+) Gọi A là biến cố “Kết quả của hai lần tung là khác nhau”.

Các kết quả thuận lợi cho biến cố A là: \(SN;{\rm{ }}NS\)tức là \(A = \left\{ {SN;NS} \right\}\).Vậy \(n\left( A \right) = 2\)

+) Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 1 trang 45 SGK Toán 10 Cánh diều tập 2 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON