YOMEDIA
NONE

Tìm các giá trị của \(a\) sao cho mỗi biểu thức sau có giá trị bằng \(2\): \(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có phương trình:\(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}} = 2\);

    ĐKXĐ: \(a \ne  - \dfrac{1}{3},a \ne  - 3\)

    Quy đồng hai vế phương trình ta được:

    \(\dfrac{{\left( {3a - 1} \right)\left( {a + 3} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}} + \dfrac{{\left( {a - 3} \right)\left( {3a + 1} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}} \)\(\,= \dfrac{{2\left( {3a + 1} \right)\left( {a + 3} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}}\)

    Khử mẫu ta được :

    \(\left( {3a - 1} \right)\left( {a + 3} \right) + \left( {a - 3} \right)\left( {3a + 1} \right) \)\(= 2\left( {3a + 1} \right)\left( {a + 3} \right)\)

    ⇔ \(3{a^2} + 9a - a - 3 + 3{a^2} - 9a + a - 3 \)\(= 6{a^2} + 18a + 2a + 6\)

    ⇔ \(6{a^2} - 6 = 6{a^2} + 20a + 6\)

    \( \Leftrightarrow 6{a^2} - 6{a^2} - 20a = 6 + 6\)

    \( \Leftrightarrow  - 20a = 12\)

    ⇔ \(a =   12:(-20)\)

    ⇔ \(a =  - \dfrac{3}{5}\) (thỏa mãn)

    Vậy \(a =  - \dfrac{3}{5}\)  thì biểu thức \(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\) có giá trị bằng \(2\).      

      bởi Ha Ku 03/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON