YOMEDIA
NONE

Chứng minh S=3^1+3^3+3^5+...+3^2011+3^2013+3^2015 không chia hết cho 9

Cho S = \(3^1+3^3+3^5+...+3^{2011}+3^{2013}+3^{2015}\).Chứng tỏ rằng:
a) S không chia hết cho 9

b) S chia hết cho 70

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a)\(3^3+3^5+...+3^{2013}+3^{2015}\) chia hết cho 9

    3 không chia hết cho 9 ⇒ S không chia hết cho 9

    S = 3.(1 + \(3^2\) + \(3^4\) ) + ... + \(3^{2011}\) (1 + \(3^2\) + \(3^4\) ) (Do S có 1008 số hạng)

    S = 3. 91 + ... + \(3^{2011}\).91

    S chia hết cho 91 nên S chia hết cho 7 (91 = 7.13)

    S = 3(1 + \(3^2\)) + ... + \(3^{2013}\) (1 + \(3^2\) ) (Do S có 1008 số hạng)

    S = 3. 10 + ... + \(3^{2011}\).10

    S chia hết cho 10. Do (7,10) =1 nên S chia hết cho 7.10 = 70

      bởi Đức Anh 09/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON