YOMEDIA
NONE

Chứng minh B=3+3^3+3^5+...+3^1995+3^1997 chia hết cho 13

1. Chứng tỏ rằng:

B = 3 + 33 + 35 + ............. + 31995 + 31997 chia hết cho 13

2. Tổng, hiệu sau đây là số nguyên tố hay hợp số 

a, 31 . 37 . 39 . 43 + 61 . 53 . 55 . 59

b, 1999 . 20011 - 135786

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài 1:

    Ta có:

    \(B=3+3^3+3^5+...+3^{1995}+3^{1997}\)

    \(\Rightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1993}+3^{1995}+3^{1997}\right)\)

    \(\Rightarrow B=3\left(1+3^2+3^4\right)+...+3^{1995}.\left(1+3^2+3^4\right)\)

    \(\Rightarrow B=3.\left(1+9+81\right)+...+3^{1995}.\left(1+9+81\right)\)

    \(\Rightarrow B=3.91+...+3^{1995}.91\)

    \(\Rightarrow B=\left(3+...+3^{1995}\right).91⋮13\)

    \(\Rightarrowđpcm\)

     

      bởi Dao trung kien 14/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON