YOMEDIA
NONE

Chứng minh A=1+3+3^2+...+3^11 chia hết cho 13

Bài 1 :

Cho A = \(1+3+3^2+....+3^{11}\) . Chứng minh rằng :

a) A chia hết cho 13 b) A chia hết cho 40

Bài 2 :

Cho C = \(3+3^2+3^3+3^4+......+3^{100}\) . Chứng minh rằng : C chia hết cho 40 .

Bài 3 :

Cho biểu thức : M = \(1+3+3^2+3^3+......+3^{118}+3^{119^{ }}\)

a) Thu gọn biểu thức M b) Biểu thức M có chia hết cho 5 , 13 không . Vì sao ?

Bài 4 :

Cho S = \(5+5^2+5^3+5^4+5^5+5^6+.......+5^{2012}\) . Chứng minh rằng S chia hết cho 65.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài 1 : \(A=1+3+3^2+...+3^{31}\)

    a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

    \(\Rightarrow A=13+3^9.13\)

    \(\Rightarrow A=13.\left(1+...+3^9\right)\)

    \(\Rightarrow A⋮13\)

    b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

    \(\Rightarrow A=40+...+3^8.40\)

    \(\Rightarrow A=40.\left(1+...+3^8\right)\)

    \(\Rightarrow A⋮40\)

      bởi Trần Thị Kim Quà 25/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON