YOMEDIA
NONE

Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right)\) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 4\). Đường tròn \(\left( C \right)\) qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục \(Oy\) và phép tịnh tiến theo véc tơ \(\overrightarrow v \left( {2;3} \right)\) được biến thành đường tròn có phương trình:

A. \({x^2} + {y^2} = 4\)

B. \({\left( {x - 2} \right)^2} + {\left( {y - 6} \right)^2} = 4\)

C. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 4\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(R = 2\).

    Gọi \(I' = {D_{Oy}}\left( I \right)\) thì \(\left\{ \begin{array}{l}x' =  - x =  - 1\\y' = y =  - 2\end{array} \right.\) hay \(I'\left( { - 1; - 2} \right)\).

    Gọi \(I'' = {T_{\overrightarrow v }}\left( {I'} \right)\) thì \(\left\{ \begin{array}{l}x'' = x' + 2 =  - 1 + 2 = 1\\y'' = y' + 3 =  - 2 + 3 = 1\end{array} \right.\) hay \(I''\left( {1;1} \right)\).

    Đường tròn ảnh có cùng bán kính với đường tròn đã cho nên có phương trình: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 4\).

    Chọn D.

      bởi Hoa Hong 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON