YOMEDIA
NONE

Trong hệ trục tọa độ Oxy, ta cho \(\vec v\left( {3;3} \right)\) và đường tròn \(\left( C \right):{\mkern 1mu} {\mkern 1mu} {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của \(\left( C \right)\) qua phép tịnh tiến \({T_{\vec v}}.\)

A. \((C'):{\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 9\)                  

B. \((C'):{\left( {x - 2} \right)^2} + {\left( {y - 5} \right)^2} = 9\)

C. \((C'):{\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} =9\)                 

D. \((C'):{\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} =3.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đường tròn (C): \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\)có tâm I(1;-2); bán kinh R=3.

    Gọi I’ là tâm đường tròn (C’).

    Phép tịnh tiến điểm I thành điểm I’ theo véc-tơ \(\vec v\left( {3;3} \right)\)thì \(\overrightarrow {II'} {\rm{\;}} = \vec v\)

    Suy ra \(I'\left( {4;1} \right)\)

    Đường tròn (C’) có tâm là \(I'\left( {4;1} \right)\); R=3 nên có dạng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 9\)

    Chọn A

      bởi Dang Tung 17/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON