Trên bảng ô vuông của một bảng 4x4 ô vuông, người ta điền một trong hai số 6 hoặc -6 sao cho tổng các số trong mỗi hàng và trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền như thế?
6 |
-6 |
-6 |
6 |
6 |
-6 |
-6 |
6 |
-6 |
6 |
6 |
-6 |
-6 |
6 |
6 |
-6 |
Trả lời (1)
-
Để cho tiện lặp luận, ta thay việc điền số 6 ta nói là điền dấu cộng "+" và thay cho việc điền số -6 ta nói là điền dấu trừ "-" . Theo thứ tự từ hàng trên xuống ta gọi là hàng 1, 2, 3, 4. Vậy mỗi hàng và mỗi cột ta cần điền 2 dấu "+" và 2 dấu "-"
Xét hai hàng 1 và 2, ta có các trường hợp sau:
Trường hợp 1: Cách điền các dấu "+", "-" ở hai hàng 1 và 2 không có 2 ô tương ứng theo cột nào giống nhau. Nói cách khác, hai hàng 1 và 2 có điền dấu trái ngược nhau. Khi đó, số cách điền dấu ở hàng 1 là 4C2 = 6, hàng 2 chỉ có một cách điền ngược lại. Tổng dấu ở hai ô tương ứng theo cột của hai hàng đầu bằng 0 nên đến hàng thứ 3 ta điền 2 dấu "+" và 2 dấu "-" tùy ý. Hàng thứ tư chỉ có cách điền ngược dấu với hàng thứ ba. Vậy có 4C2 = 6 cách điền dấu hai hàng cuối. Trong trường hợp này ta có 6.6 = 36 cách điền số thỏa mãn đề bài.
Trường hợp 2: Cách điền các dấu "+", "-" ở hai hàng 1 và 2 có cả 4 ô tương ứng theo cột giống nhau. Khi đó, số cách điền dấu ở hàng một và hai là 4C2 = 6. Tổng dấu ở 2 ô tương ứng theo cột của 2 hàng đầu bằng hai lần dấu "+" hoặc 2 lần dấu "-"nên đến hàng thứ ba, tư ta điền dấu giống nhau và ngược lại so với hàng một, hai. Vậy chỉ có một cách điền dấu hai hàng cuối. Trong trường hợp này ta có 6 cách điền số thỏa mãn đề bài.
Trường hợp 3: Cách điền các dấu "+", "-" ở hai hàng một và hai có đúng hai ô tương ứng theo cột giống nhau. Tức là có đúng hai cột giống nhau và 2 cột khác nhau.
Chọn một trong hai cột giống nhau để điền dấu "+", cột giống nhau còn lại điền dấu "-" thì có 2 cách. Ở hai cột khác nhau cũng chỉ có 2 cách điền dấu ngược nhau. Đến hàng thứ ba, ở cột ô giống nhau của hai hàng trên, ta chỉ có cách điền ngược dấu, còn ở cột ô khác nhau, ta có cách điền tùy ý dấu nào cũng được, nhưng chỉ được tùy ý cho 2 cách điền ở một ô, ô còn lại không có lựa chọn. Vậy có 2 cách điền hàng ba. Hàng thứ tư chỉ có một cách điền duy nhất.
Vậy trong trường hợp này ta có 6.4.2 48 cách.
Tóm lại có 36 + 6 + 48 = 90 cách.
bởi Lê Bảo An 30/05/2020Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
Khai triển nhị thức của new tơn(2x 1)¹⁰
24/11/2022 | 0 Trả lời
-
Có bao nhiêu cách chia 9 người làm 3 nhóm, mỗi nhóm 3 người?
26/11/2022 | 2 Trả lời
-
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD), AB là đáy lớn. I,J lần
lượt là trung điểm của SA, SB. M thuộc cạnh SD.a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Chứng minh rằng: IJ // (SCD).
c) Tìm giao điểm của SC và mặt phẳng (IJM).
Vẽ hình luôn giúp em . Em cảm ơn
04/12/2022 | 0 Trả lời
-
Giải dùm mình với ạ
07/12/2022 | 0 Trả lời
-
cho hình chóp S.ABCD có đáy là hình bình hành tâm O . gọi M,N lần lượt là hai điểm nằm trên cạnh SB,SD sao cho SB=4MB ; SD=4ND. Gọi P là điểm đối xứng với O qua C . chứng minh
21/12/2022 | 0 Trả lời
-
Tập xác định của hàm sô y= 3cot.x + cos.2x là gì ?
21/12/2022 | 0 Trả lời
-
Giúp em với ạ cần gấp!!!
24/12/2022 | 0 Trả lời
-
Giải thích dùm em với
26/12/2022 | 0 Trả lời
-
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn AD và AD=2BC. Gọi 0 là giao điểm của AC và BD;
a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b) Gọi I, J lần lượt là trọng tâm của tam giác SAB và SCD. Chứng minh IJ // (ABCD)..
26/12/2022 | 0 Trả lời
-
Tổng các nghiệm của phương trình cos 2x=2/3 trong khoảng [0;π] bằng bao nhiêu?
27/12/2022 | 0 Trả lời
-
cho dãy số (Un) với U1 = -3 U3 = -243
a)hỏi số -19683 là số hạng thứ mấy của dãy số
b)Tính tổng của 20 dãy số
24/02/2023 | 0 Trả lời
-
cho hình chóp sabcd có đáy abcd là hình vuông cạnh bên sa vuông góc với mặt đáy sa=ab=a gọi phi là góc giữa sb và mp(sac)tính phi
02/03/2023 | 0 Trả lời
-
lim --> âm vô cùng X+√x^2+1/ 2x+3
05/03/2023 | 0 Trả lời
-
Cho hình chóp S.ABCD có đáy hình vuông SC⊥ (ABCD). Gọi I, J lần lượt là hình chiếu vuông góc của C lên SB, SD
a/ Chứng minh AB ⊥ (SBC)
b/ Chứng minh AD ⊥ (SCD)
c/ Chứng minh SA ⊥ CI
d/ Chứng minh (SAC) ⊥ (CIJ)
15/03/2023 | 0 Trả lời
-
lim xm-xn/x-1 (lim x tiến tới 1)
16/03/2023 | 0 Trả lời
-
Cho hàm số: \(f(x)=\left\{ \begin{align}
& \frac{\sqrt{7x-10}-2}{x-2},x>2 \\
& mx+3,x\le 2 \\
\end{align} \right.\). Tìm m để hàm số liên tục tại x = 2.
16/03/2023 | 2 Trả lời
-
Cho phương trình: \(\left( {{m}^{4}}+m+1 \right){{x}^{2019}}+{{x}^{5}}-32\,\,=\,\,0\) , m là tham số
CMR phương trình trên luôn có ít nhất một nghiệm dương với mọi giá trị của tham số m
17/03/2023 | 1 Trả lời
-
Tìm giới han sau: \(\underset{x\to -1}{\mathop{\lim }}\,\left( -5{{x}^{2}}+7x-4 \right)\)
16/03/2023 | 1 Trả lời
-
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC= a, AD=2a. Cạnh bên SA vuông góc với mặt đáy và SA=a. Chứng minh BC vuông góc với mặt phẳng (SAB). Từ đó suy ra tam giác SBC vuông tại B.
17/03/2023 | 1 Trả lời
-
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B,
AB=BC= a, AD=2a; Cạnh bên SA vuông góc với mặt đáy và SA=a.
a) Chứng minh BC vuông góc với mặt phẳng (SAB). Từ đó suy ra tam giác SBC vuông tại B.
b) Xác định và tính góc giữa SC và mặt phẳng (SAD).
17/03/2023 | 1 Trả lời
-
Hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:
A. \({y^{(5)}} = - \frac{{120}}{{{{(x + 1)}^6}}}\)
B. \({y^{(5)}} = \frac{{120}}{{{{(x + 1)}^6}}}\)
C. \({y^{(5)}} = \frac{1}{{{{(x + 1)}^6}}}\)
D. \({y^{(5)}} = - \frac{1}{{{{(x + 1)}^6}}}\)
18/03/2023 | 1 Trả lời
-
A. \({y^{''}} = - \frac{{2\sin x}}{{{{\cos }^3}x}}\)
B. \({y^{''}} = \frac{1}{{{{\cos }^2}x}}\)
C. \({y^{''}} = - \frac{1}{{{{\cos }^2}x}}\)
D. \({y^{''}} = \frac{{2\sin x}}{{{{\cos }^3}x}}\)
18/03/2023 | 1 Trả lời
-
A. M=sinx.
B. M=6sinx.
C. M=6cosx.
D. M=−6sinx.
18/03/2023 | 1 Trả lời
-
Cho Hình chóp SABCD có đáy ABCD là hình vuông tâm 0 cạnh a, SA vuông góc (ABCD) , SA =3a.
a) tính [SO;^(ABCD)] = ?
b) tính [(SCD);^(ABCD)]=?
04/04/2023 | 0 Trả lời
-
Cho hình chóp SABCD, ABCD là hình chữ nhật, AB = 2a, BD = 4a, I là trung điểm AB, SI = 6a
a) chứng minh (SBC) vuông góc (SAB)
b) tính ( SC,(ABCD) )
c) tính ( SC,SAB) )
d) tính góc giữa (SCD) và (ABCD)
e) tính góc giữa (SAC) và (ABCD)
09/04/2023 | 0 Trả lời