Tính góc giữa SC và (ABCD), biết đáy ABCD là hình thang vuông tại A và D

bởi Thiên Mai 25/10/2018

cho hình chóp SABCD đáy ABCD là hình thang vuông tại A và D
AB=a, DC=2a. SA vuông góc (ABCD), SA=a\(\sqrt{3}\) , AD=a\(\sqrt{5}\)

a) CM: AD vuông góc (SAB)

b) Tính góc giữa SC và (ABCD)

c) Gọi I là trung điểm của DC. Tính góc giữa SI và (ABCD)

Câu trả lời (1)

  • Lời giải:

    a)

    Có \(SA\perp (ABCD)\Rightarrow SA\perp AD\)

    \(AB\perp AD\) do $ABCD$ là hình thang vuông tại $A$

    \(\Rightarrow AD\perp (SAB)\)

    b)

    \(SA\perp (ABCD)\Rightarrow \angle (SC, (ABCD))=\angle (SC,AC)=\widehat{SCA}\)

    Pitago: \(AC=\sqrt{AD^2+DC^2}=3a\)

    \(\tan \widehat{SCA}=\frac{SA}{AC}=\frac{a\sqrt{3}}{3a}=\frac{\sqrt{3}}{3}\)

    \(\Rightarrow \angle (SC, (ABCD))=\widehat{SCA}=30^0\)

    c)

    \(SA\perp (ABCD)\Rightarrow \angle (SI, (ABCD))=\angle (SI,AI)=\widehat{SIA}\)

    Pitago: \(AI^2=\sqrt{AD^2+DI^2}=\sqrt{5a^2+a^2}=\sqrt{6}a\)

    \(\tan \widehat{SIA}=\frac{SA}{AI}=\frac{\sqrt{3}a}{\sqrt{6}a}=\frac{\sqrt{2}}{2}\)

    \(\Rightarrow \angle (SI,(ABCD))=\widehat{SIA}=\arctan \frac{\sqrt{2}}{2}\)

    bởi Nguyen Mai 25/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan