YOMEDIA
NONE

Thực hiện giải phương trình lượng giác sau: \(\dfrac{{\sin x + \sin 2x}}{{\sin 3x}} = - 1\).

Thực hiện giải phương trình lượng giác sau: \(\dfrac{{\sin x + \sin 2x}}{{\sin 3x}} =  - 1\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ĐK: \(\sin 3x \ne 0 \Leftrightarrow 3x \ne k\pi \) \( \Leftrightarrow x \ne \dfrac{{k\pi }}{3}\)

    PT\( \Rightarrow \sin x + \sin 2x =  - \sin 3x\) \( \Leftrightarrow \left( {\sin x + \sin 3x} \right) + \sin 2x = 0\)

    \( \Leftrightarrow 2\sin 2x\cos x + \sin 2x = 0\) \( \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) = 0\)

     

    \( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\2\cos x + 1 = 0\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos x =  - \dfrac{1}{2}\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x =  \pm \dfrac{\pi }{3} + k2\pi \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{k\pi }}{2}\\x =  \pm \dfrac{\pi }{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)

    Biểu diễn các nghiệm trên đường tròn lượng giác ta được:

     

    Quan sát hình vẽ ta thấy phương trình có nghiệm \(x = \dfrac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\) (hai điểm màu xanh).

      bởi Bánh Mì 17/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON