RANDOM
VIDEO

Hai người độc lập nhau ném bóng vào rổ. Mỗi người ném vào rổ của mình một quả bóng. Biết rằng xác suất ném bóng trúng vào rổ của từng người tương ứng là 1/5 và 2/7. Gọi A là biến cố: “Cả hai cùng ném bóng trúng vào rổ”. Khi đó, xác suất của biến cố A là bao nhiêu?

Theo dõi Vi phạm
RANDOM

Trả lời (1)

 
 
 
  • Gọi A là biến cố: “Cả hai cùng ném bóng trúng vào rổ. “

    Gọi X là biến cố: “người thứ nhất ném trúng rổ. Theo giả thiết P(X)=1/5

    Gọi Y là biến cố: “người thứ hai ném trúng rổ.Theo giả thiết P(Y)=2/7

    Ta thấy biến cố X, Y là 2 biến cố độc lập nhau, theo công thức nhân xác suất ta có:

     \(\begin{array}{l}
    P\left( A \right) = P\left( {X.Y} \right) = P\left( X \right).P\left( Y \right)\\
     = \frac{1}{5}.\frac{2}{7} = \frac{2}{{35}}
    \end{array}\)

      bởi Mai Bảo Khánh 25/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 304_1605583707.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/thptqg/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-11-30 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

    [1] => Array
        (
            [banner_picture] => 202_1605583688.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-11-02 00:00:00
            [banner_enddate] => 2020-11-30 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)