YOMEDIA
NONE

Giải phương trình: \(\tan \left( {{{120}^0} + 3x} \right) - \tan \left( {{{140}^0} - x} \right) = 2\sin \left( {{{80}^0} + 2x} \right)\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ĐK:

    \(\begin{array}{l}\left\{ \begin{array}{l}{120^0} + 3x \ne {90^0} + k{.180^0}\\{140^0} - x \ne {90^0} + k{.180^0}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}3x \ne  - {30^0} + k{.180^0}\\x \ne {50^0} - k{.180^0}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ne  - {10^0} + k{.180^0}\\x \ne {50^0} - k{.180^0}\end{array} \right.\end{array}\)

    \(\begin{array}{l}\tan \left( {{{120}^0} + 3x} \right) - \tan \left( {{{140}^0} - x} \right) = 2\sin \left( {{{80}^0} + 2x} \right)\\ \Leftrightarrow \tan \left[ {3\left( {{{40}^0} + x} \right)} \right] - \tan \left[ {{{180}^0} - \left( {{{40}^0} + x} \right)} \right] = 2\sin \left[ {2\left( {{{40}^0} + x} \right)} \right]\\ \Leftrightarrow \tan \left[ {3\left( {{{40}^0} + x} \right)} \right] - \tan \left[ { - \left( {{{40}^0} + x} \right)} \right] = 2\sin \left[ {2\left( {{{40}^0} + x} \right)} \right]\\ \Leftrightarrow \tan \left[ {3\left( {{{40}^0} + x} \right)} \right] + \tan \left( {{{40}^0} + x} \right) = 2\sin \left[ {2\left( {{{40}^0} + x} \right)} \right]\end{array}\)

    Đặt \({40^0} + x = y\) ta được:

    \(\begin{array}{l}\tan 3y + \tan y = 2\sin 2y\\ \Leftrightarrow \frac{{\sin 3y}}{{\cos 3y}} + \frac{{\sin y}}{{\cos y}} = 2\sin 2y\\ \Leftrightarrow \frac{{\sin 3y\cos y + \sin y\cos 3y}}{{\cos 3y\cos y}} = \frac{{2\sin 2y\cos 3y\cos y}}{{\cos 3y\cos y}}\\ \Rightarrow \sin 3y\cos y + \sin y\cos 3y = 2\sin 2y\cos 3y\cos y\\ \Leftrightarrow \sin 4y - 2\sin 2y\cos 3y\cos y = 0\\ \Leftrightarrow 2\sin 2y\cos 2y - 2\sin 2y\cos 3y\cos y = 0\\ \Leftrightarrow 2\sin 2y\left( {\cos 2y - \cos 3y\cos y} \right) = 0\\ \Leftrightarrow 2\sin 2y\left[ {\cos 2y - \frac{1}{2}\left( {\cos 4y + \cos 2y} \right)} \right] = 0\\ \Leftrightarrow 2\sin 2y\left( {\frac{1}{2}\cos 2y - \frac{1}{2}\cos 4y} \right) = 0\\ \Leftrightarrow \sin 2y\left( {\cos 2y - \cos 4y} \right) = 0\\ \Leftrightarrow \sin 2y.\left[ { - 2\sin 3y\sin \left( { - y} \right)} \right] = 0\\ \Leftrightarrow 2\sin y\sin 2y\sin 3y = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin y = 0\\\sin 2y = 0\\\sin 3y = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = k{180^0}\\2y = k{180^0}\\3y = k{180^0}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}y = k{.180^0}\\y = k{.90^0}\\y = k{.60^0}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = k{.60^0}\\y = {90^0} + k{.180^0}\end{array} \right.\end{array}\)

    Suy ra

    \(\begin{array}{l}\left[ \begin{array}{l}x + {40^0} = k{.60^0}\\x + {40^0} = {90^0} + k{.180^0}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x =  - {40^0} + k{.60^0}\\x = {50^0} + k{180^0}\left( {loai} \right)\end{array} \right.\\ \Leftrightarrow x =  - {40^0} + k{.60^0},k \in \mathbb{Z}\end{array}\)

    Vậy pt có nghiệm \(x =  - {40^0} + k{.60^0},k \in \mathbb{Z}\).

      bởi can tu 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON