YOMEDIA
NONE

Chứng minh rằng phương trình sau \(2{x^3} - 5x + 1 = 0\) có đúng 3 nghiệm.

Chứng minh rằng phương trình sau \(2{x^3} - 5x + 1 = 0\) có đúng 3 nghiệm.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Xét hàm số \(f\left( x \right) = 2{x^3} - 5x + 1\) xác định và liên tục trên \(\mathbb{R}\).

    Ta có \(f\left( { - 2} \right) =  - 5\), \(f\left( 0 \right) = 1\), \(f\left( 1 \right) =  - 2\), \(f\left( 2 \right) = 7\).

    \(f\left( { - 2} \right).f\left( 0 \right) =  - 5 < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( { - 2;0} \right)\).

    Tương tự:

    \(f\left( 0 \right).f\left( 1 \right) =  - 2 < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( {0;1} \right)\).

    \(f\left( 1 \right).f\left( { - 2} \right) =  - 14 < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( {1;2} \right)\).

    Do các khoảng \(\left( { - 2;0} \right)\), \(\left( {0;1} \right)\), \(\left( {1;2} \right)\) rời nhau nên phương trình \(f\left( x \right) = 0\) có ít nhất 3 nghiệm phân biệt.

    Mà \(2{x^3} - 5x + 1 = 0\) là phương trình bậc ba chỉ có tốt đa 3 nghiệm phân biệt.

    Vậy phương trình \(2{x^3} - 5x + 1 = 0\) có đúng 3 nghiệm phân biệt (đpcm).

      bởi thúy ngọc 18/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON