YOMEDIA
NONE

Chứng minh rằng nếu các số \({a^2},{b^2},{c^2}\) lập thành một cấp số cộng \((abc ≠ 0)\) thì các số \(\displaystyle{1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\) cũng lập thành một cấp số cộng.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta phải chứng minh: \(\displaystyle {1 \over {b + c}} - {1 \over {c + a}} = {1 \over {c + a}} - {1 \over {a + b}} \)

    Thật vậy,

    \(\eqalign{
    & {1 \over {b + c}} - {1 \over {c + a}} = {1 \over {c + a}} - {1 \over {a + b}} \cr
    & \Leftrightarrow {{c + a - b - c} \over {(c + a)(b + c)}} = {{a + b - c - a} \over {(c + a)(a + b)}} \cr
    & \Leftrightarrow {{a - b} \over {b + c}} = {{b - c} \over {a + b}}\cr & \Leftrightarrow \left( {a - b} \right)\left( {a + b} \right) = \left( {b + c} \right)\left( {b - c} \right)\cr &\Leftrightarrow {a^2} - {b^2} = {b^2} - {c^2}\cr} \)

    (đúng do \(a^2, b^2,c^2\) lập thành CSC)

    Vậy (1) đúng nên \(\displaystyle{1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\) là cấp số cộng.

      bởi Goc pho 24/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON