YOMEDIA
NONE

Chứng minh EGFH là hình bình hành, biết ABE, CDF là các tam giác đều

Cho tứ giác lồi ABCD. Lấy các cạnh AB, CD làm đáy, dựng ra ngoài hai tam giác đều ABE, CDF. Lấy các cạnh BC, DA làm đáy, dựng vào trong hai tam giác đều BCG, DAH (tam giác BCG và tứ giác ABCD nằm về cùng một phía của đường thẳng BC, tam giá DAH và tứ giác ABCD nằm về cùng một phía của đường thẳng DA). Chứng minh rằng tứ giác EGFH là một hình bình hành

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử tứ giác ABCD định hướng âm. Gọi \(f\) là phép quay vec tơ theo góc \(\frac{\pi}{3}\) ta có

    \(\overrightarrow{EG}=\overrightarrow{AG}-\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BG}-\overrightarrow{AE}\)

    suy ra \(f\left(\overrightarrow{EG}\right)=f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{BG}\right)-f\left(\overrightarrow{AE}\right)\)

                            \(=\overrightarrow{AE}+\overrightarrow{BC}-\overrightarrow{BE}\)

                            \(=\overrightarrow{AC}\)

    Tương tự ta cũng chứng minh được \(f\left(\overrightarrow{HF}\right)=\overrightarrow{AC}\)

    Từ đó suy ra \(\overrightarrow{EG}=\overrightarrow{HF}\)

    Do đó tứ giác EGFH là hình bình hành

      bởi Trần Thị Xuân Dung 01/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON