YOMEDIA
NONE

Cho tứ diện ABCD. Trên các cạnh AB, AD lần lượt lấy các điểm M, N sao cho \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AD}} = \frac{1}{3}\). Gọi P, Q lần lượt là trung điểm các cạnh CD, CB. Khẳng định nào sau đây đúng?

A. Bốn điểm M, N, P, Q không đồng phẳng.

B. Tứ giác MNPQ là hình bình hành.

C. Tứ giác MNPQ là hình thang.

D. Tứ giác MNPQ không có các cặp cạnh đối nào song song.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Vì \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AD}} = \frac{1}{3}\) nên MN // BD

    Tam giác BCD có PQ là đường trung bình nên PQ // BD và \(PQ = \frac{1}{2}BD\)

    Do đó MN//PQ và MN < PQ nên tứ giác MNPQ là một hình thang.

    Chọn đáp án: D

      bởi Kim Xuyen 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON