YOMEDIA
NONE

Cho hàm số f(x) xác định trên đoạn [a; b]. Trong các mệnh đề sau, mệnh đề nào đúng?

A. Nếu hàm số f(x) liên tục trên đoạn [a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0 không có nghiệm trong khoảng (a; b)

B. Nếu f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a; b)

C. Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a; b) thì hàm số f(x) phải liên tục trên khoảng (a; b)

D. Nếu f(x) hàm số liên tục, tăng trên đoạn [a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0 không thể có nghiệm trong khoảng (a; b)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đáp án A: sai vì ta chưa thể kết luận gì về nghiệm khi f(a).f(b) > 0.

    Đáp án B: sai vì thiếu điều kiện f(x) liên tục trên (a;b).

    Đáp án C: sai vì vẫn có thể xảy ra trường hợp f(x) gián đoạn tại một điểm nào đó trong khoảng (a;b).

    Đáp án D: đúng.

    Ta có: \(f\left( a \right).f\left( b \right) > 0\) \( \Leftrightarrow \left[ \begin{array}{l}f\left( a \right) > 0,f\left( b \right) > 0\\f\left( a \right) < 0.f\left( b \right) < 0\end{array} \right.\)

    Do hàm số f(x) tăng trên [a;b] nên \(f\left( a \right) \le f\left( x \right) \le f\left( b \right)\).

    Nếu \(f\left( a \right) > 0,f\left( b \right) > 0\) thì \(0 < f\left( a \right) \le f\left( x \right)\) \( \Rightarrow f\left( x \right) > 0,\forall x \in \left[ {a;b} \right]\) hay phương trình vô nghiệm trong \(\left[ {a;b} \right]\).

    Nếu \(f\left( a \right) < 0,f\left( b \right) < 0\) thì \(f\left( x \right) \le f\left( b \right) < 0\) \( \Rightarrow f\left( x \right) < 0,\forall x \in \left[ {a;b} \right]\) hay phương trình vô nghiệm trong \(\left[ {a;b} \right]\).

    Vậy trong cả hai TH thì f(x) đều không có nghiệm trong (a;b).

    Chọn đáp án: D

      bởi Mai Thuy 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON