YOMEDIA
NONE

Cho biết phương trình \({x^3} - 3{x^2} + 3 = 0\). Khẳng định nào sau đây đúng ?

A. Phương trình vô nghiệm   

B. Phương trình có đúng 3 nghiệm phân biệt

C. Phương trình có đúng hai nghiệm \(x = 1;\,\,x = 2\).

D. Phương trình có đúng một nghiệm

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt \(f\left( x \right) = {x^3} - 3{x^2} + 3\), hàm số liên tục trên \(\mathbb{R}\). Ta có:

    \(\left\{ \begin{array}{l}f\left( { - 1} \right) =  - 1\\f\left( 0 \right) = 3\end{array} \right. \Leftrightarrow f\left( { - 1} \right).f\left( 0 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( { - 1;0} \right)\).

    \(\left\{ \begin{array}{l}f\left( 1 \right) = 1\\f\left( 2 \right) =  - 1\end{array} \right. \Leftrightarrow f\left( 1 \right).f\left( 2 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( {1;2} \right)\).

    \(\left\{ \begin{array}{l}f\left( 2 \right) =  - 1\\f\left( 3 \right) = 3\end{array} \right. \Leftrightarrow f\left( 2 \right).f\left( 3 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( {2;3} \right)\).

    Do \(\left( { - 1;0} \right) \cap \left( {1;2} \right) \cap \left( {2;3} \right) = \emptyset \) nên ta sẽ có 3 nghiệm phân biệt và \({x^3} - 3{x^2} + 3 = 0\) là phương trình bậc ba nên sẽ có tối đa 3 nghiệm.

    Vậy phương trình đã cho có đúng 3 nghiệm phân biệt.

    Chọn B.

      bởi Trần Hoàng Mai 18/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON