Viết pt phân giác góc nhọn tạo bởi đường thẳng d_1: 4x+3y-5=0 và d_2
Viết phương trình của phân giác góc nhọn tạo bởi đường thẳng
\(d_1:4x+3y-5=0\)
\(d_2:\begin{cases}x=-2-4t\\y=2+3t\end{cases}\) \(\left(t\in R\right)\)
Trả lời (1)
-
Đường thẳng \(d_2\) có phương trình tổng quát là :
\(3x+4y-2=0\)
Theo định lý, đường phân giác các góc tạo bởi \(d_1,d_2\) có phương trình dạng :
\(\frac{4x+3y-5}{\sqrt{4^2+3^2}}=\pm\frac{3x+4y-5}{\sqrt{3^2+4^2}}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+y-1=0\left(l_1\right)\\x-y-3=0\left(l_2\right)\end{array}\right.\)
Gọi \(\alpha_k\) là góc giữa \(l_k\) và \(d_1\), \(k=1,2\) khi đó
\(\cos\alpha_1=\frac{\left|4.1+3.1\right|}{\sqrt{\left(4^2+3^2\right)\left(1^2+1^2\right)}}=\frac{7}{5\sqrt{2}}\)
và
\(\cos\alpha_2=\frac{\left|4.1+3.\left(-1\right)\right|}{\sqrt{\left(4^2+3^2\right)\left(1^2+\left(-1^2\right)\right)}}=\frac{1}{5\sqrt{2}}\)
Suy ra \(\cos\alpha_1>\cos\alpha_2\) . Từ đó hàm số \(y=\cos x\) nghịch biến trên \(\left[0;\frac{\pi}{2}\right]\) nên \(0< \alpha_1< \alpha_2< \frac{\pi}{2}\)
Suy ra \(l_1\) là phân giác góc nhọn tạo bởi hai đường thẳng \(d_1;d_2\) đã cho
bởi Quách Thị Ngọc Lan 07/11/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời