Viết phương trình tổng quát của đường thẳng song song với đường thẳng \(\Delta :\left\{ \matrix{ x = 2t - 3 \hfill \cr y = t + 5 \hfill \cr} \right.\) và cách điểm \(A(1;1)\) một khoảng bằng \(3\sqrt 5 \).
Trả lời (1)
-
Đường thẳng \(\Delta \) có véc tơ chỉ phương \(\overrightarrow u = \left( {2;1} \right)\) nên nhận \(\overrightarrow n = \left( {1;-2} \right)\) làm VTPT
Mà \(\Delta\) đi qua điểm (-3;5) nên có phương trình:
\(\Delta :\)\(1\left( {x + 3} \right) - 2\left( {y - 5} \right) = 0 \) \(\Leftrightarrow x - 2y - 7 = 0\)
Phương trình đường thẳng \(\Delta '\) song song với \(\Delta \) có dạng: \(x - 2y + c = 0,c \ne - 7\)
Theo giả thiết
\(d\left( {A;\Delta '} \right) = 3\sqrt 5 \)
\(\Leftrightarrow \dfrac{{\left| {1 - 2 + c} \right|}}{{\sqrt 5 }} = 3\sqrt 5 \)
\(\Leftrightarrow \left| {c - 1} \right| = 5\)
\( \Leftrightarrow \left[ \matrix{ c - 1 = 15 \hfill \cr c - 1 = - 15 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ c = 16 \hfill \cr c = - 14 \hfill \cr} \right.\)
Vậy có hai đường thẳng
\(\Delta ':x - 2y + 16 = 0 \)
\(\Delta '':x - 2y - 14 = 0 \).
bởi Anh Trần 20/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời