Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có pt 2x+y-8=0
Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm của cạnh AD và DC ; K là giao điểm của BN với CM. Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình \(2x+y-8=0\) và điểm B có hoành độ lớn hơn 2
Trả lời (2)
-
Gọi \(E=BN\cap AD\Rightarrow D\) là trung điểm của AE.
Dựng \(AH\perp BN\) tại H \(\Rightarrow AH=d\left(A;BN\right)=\frac{8}{\sqrt{5}}\)
Trong tam giác vuông ABE : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AE^2}=\frac{5}{4AB^2}\Rightarrow AB=\frac{\sqrt{5}.AH}{2}=4\)
\(B\in BN\Rightarrow B\left(b;8-2b\right)\left(b>2\right)\)
\(AB=4\Rightarrow B\left(3;2\right)\)
Phương trình AE : \(x+1=0\)
\(E=AE\cap BN\Rightarrow E\left(-1;10\right)\Rightarrow D\left(-1;6\right)\Rightarrow M\left(-1;4\right)\)
Gọi I là tâm của (BKM) => I là trung điểm của BM => I(1;3)
\(R=\frac{BM}{2}=\sqrt{5}\)
Vậy phương trình đường tròn : \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
bởi Thảo Nhi 25/10/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời