Trong mặt phẳng Oxy, cho tam giác ABC với \(A(2;4);B(3;1);C( - 1;1)\). Tìm tọa độ trọng tâm G, trực tâm H, tâm I của đường tròn ngoại tiếp tam giác ABC.
Trả lời (1)
-
\(A(2;4),B(3;1),C( - 1;1)\)
Tọa độ trọng tâm G của tam giác ABC là: \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3} = \dfrac{4}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3} = 2\end{array} \right.\)
Vậy \(G\left( {\dfrac{4}{3};2} \right)\)
*Gọi H(x; y), ta có:
\(\overrightarrow {AB} = (1; - 3);\overrightarrow {BC} = ( - 4;0)\);\(\overrightarrow {CH} = (x + 1;y - 1);\)\(\overrightarrow {AH} = (x - 2;y - 4)\)
H là trực tâm tam giác ABC \( \Leftrightarrow \left\{ \begin{array}{l}AH \bot BC\\CH \bot AB\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {CH} .\overrightarrow {AB} = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 4(x - 2) +0(y-4)= 0\\(x + 1) - 3(y - 1) = 0\end{array} \right. \)
\( \Leftrightarrow \left\{ \begin{array}{l}
x - 2 = 0\\
x - 3y + 4 = 0
\end{array} \right.\)\(\Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right.\)
*Gọi I(x; y), I là tâm đường tròn ngoại tiếp tam giác ABC \( \Leftrightarrow IA = IB = IC\)
\( \Leftrightarrow \left\{ \begin{array}{l}
AI = BI\\
BI = CI
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
\sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 4} \right)}^2}} = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 1} \right)}^2}} \\
\sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 1} \right)}^2}} = \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y - 1} \right)}^2}}
\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{(x - 2)^2} + {(y - 4)^2} = {(x - 3)^2} + {(y - 1)^2}\\{(x - 3)^2} + {(y - 1)^2} = {(x + 1)^2} + {(y - 1)^2}\end{array} \right.\)
\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2}\\
{\left( {x - 3} \right)^2} = {\left( {x + 1} \right)^2}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2}\\
{x^2} - 6x + 9 = {x^2} + 2x + 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2}\\
- 8x = - 8
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {1 - 2} \right)^2} + {\left( {y - 4} \right)^2} = {\left( {1 - 3} \right)^2} + {\left( {y - 1} \right)^2}\\
x = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
1 + {y^2} - 8y + 16 = 4 + {y^2} - 2y + 1\\
x = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
- 6y = - 12\\
x = 1
\end{array} \right.
\end{array}\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)
Vậy: I(1; 2)
bởi Nguyễn Lệ Diễm 22/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời