Trong kì kiểm tra chất lượng ở hai khối lớp, mỗi khối có \(25\%\) học sinh trượt Toán, \(15\%\) trượt Lí và \(10\%\) trượt Hoá. Từ mỗi khối chọn ngẫu nhiên một học sinh. Tính xác suất sao cho hai học sinh đó đều bị trượt một môn nào đó;
Trả lời (1)
-
Kí hiệu \({A_1},{A_2},{A_3}\) lần lượt là các biến cố: Học sinh được chọn từ khối I trượt Toán, Lí, Hoá; \({B_1},{B_2},{B_3}\) lần lượt là các biến cố: Học sinh được chọn từ khối II trượt Toán, Lí, Hoá. Rõ ràng với mọi \((i,j)\), các biến cố \({A_i}\) và \({B_j}\) độc lập.
Ta có \(A_1\), \(A_2\), \(A_3\) là ba biến cố xung khắc cùng liên quan đến phép thử chọn ngẫu nhiên một học sinh nên \(P(A_1\cup A_2\cup A_3)\)
\(=P(A_1)+P(A_2)+P(A_3)\)
\(=\dfrac{1}{4}+\dfrac{3}{20}+\dfrac{1}{10}=\dfrac{1}{2}\)
Tương tự ta tính được \(P(B_1\cup B_2\cup B_3)=\dfrac{1}{2}\)
Xác suất để hai học sinh đó đều bị trượt một môn nào đó là \(P\left( {\left( {{A_1} \cup {A_2} \cup {A_3}} \right) \cap \left( {{B_1} \cup {B_2} \cup {B_3}} \right)} \right) \)
\(= P\left( {{A_1} \cup {A_2} \cup {A_3}} \right).P\left( {{B_1} \cup {B_2} \cup {B_3}} \right) \)
\(= \dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4}\).
bởi Quynh Anh 14/09/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời