Tìm m để phương trình x^4-(2m+1)x^2+m^2=0 có 4 nghiệm phân biệt
Tìm m để phương trình sau có 4 nghiệm phân biệt \(x^{^4}-\left(2m+1\right)x^{^2}+m^{^2}=0\)
Trả lời (2)
-
Lời giải:
Đặt \(x^2=t\)
Để thu được 4 nghiệm $x$ phân biệt thì pt \(t^2-(2m+1)t+m^2=0^*\) phải có hai nghiệm dương phân biệt.
Trước tiên để có hai nghiệm phân biệt thì:
\(\Delta =(2m+1)^2-4m^2>0\)
\(\Leftrightarrow 4m+1>0\Leftrightarrow m> \frac{-1}{4}\) (1)
Khi đó áp dụng hệ thức Viete với \(t_1,t_2\) là hai nghiệm của \(^*\)
\(\left\{\begin{matrix} t_1+t_2=2m+1\\ t_1t_2=m^2 \end{matrix}\right.\)
Để \(t_1,t_2\) dương thì: \(\left\{\begin{matrix} t_1+t_2=2m+1>0\\ t_1t_2=m^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> \frac{-1}{2}\\ m\neq 0\end{matrix}\right.\) (2)
Từ (1),(2) suy ra điều kiện của m là \(m> \frac{-1}{4}; m\neq 0\)
bởi Vũ Thị An 23/10/2018Like (1) Báo cáo sai phạm -
tìm 4 nghiện mà sao đây chỉ có 2 nghiện dương vậy
bởi Nguyễn Hồng Ngọc 11/08/2021Like (0) Báo cáo sai phạm
Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời