Gọi H là trung điểm DI, biết đường thẳng AH cắt CD tại \(P(\frac{7}{2};1).\)
Trong mặt phẳng với tọa độ Oxy cho hình vuông ABCD có hai điểm M, N lần lượt là trung điểm của AB và BC, biết CM cắt DN tại điểm \(I(\frac{22}{5};\frac{11}{5}).\) Gọi H là trung điểm DI, biết đường thẳng AH cắt CD tại \(P(\frac{7}{2};1).\) Tìm tọa độ các đỉnh của hình vuông ABCD biết hoành độ điểm A nhỏ hơn 4.
Trả lời (1)
-
Ta có \(\triangle MBC=\triangle NCD\) do đó \(CM \perp DN.\) Vì \(AH \perp DN\) nên AMCP là hình bình hành và P là trung điểm CD và góc \(\widehat{AIP}=90^{\circ}\)
Đường thẳng AI vuông góc với PI qua I có dạng \(3x+4y-22=0\)
Gọi \(A(2-4t;4-3t)\Rightarrow \overrightarrow{IA}=(-4t-\frac{12}{5};3t+\frac{9}{5})\)
\(AI=2PI\Leftrightarrow (4t+\frac{12}{5})^{2}+(3t+\frac{9}{5})^{2}=9\)
\(\Leftrightarrow t=0,t=-\frac{6}{5}\)
Nếu \(t=-\frac{6}{5}\) thì \(A\left ( \frac{34}{5};\frac{2}{5} \right )\) (loại). Nếu t = 0 thì A(2; 4)
Đường thẳng \(AP: 2x + y - 8 = 0, DN \perp AP\) và đi qua I có dạng x - 2y = 0. Ta có
\(DN\cap AP=H\left ( \frac{16}{5};\frac{8}{5} \right )\Rightarrow D(2;1)\Rightarrow C(5;1)\Rightarrow B(5;4)\)
Vậy A(2; 4), B(5; 4), C(5; 1), D(2; 1)
bởi Hy Vũ 09/02/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời