Giải và biện luận bpt (m-1)x^2-2mx+3m-2 > 0
Giải và biện luận bất phương trình sau
\(\left(m-1\right)x^2-2mx+3m-2>0\)
Trả lời (1)
-
\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)
- Nếu \(m=1\) thì (1) có dạng \(-2x+1>0\) nên có nghiệm \(x<\frac{1}{2}\)
- Nếu \(m\ne1\) thì (1) là bất phương trình bậc 2 với \(a=m-1\) và biệt thức \(\Delta'=-2m+5m-2\)
Trong trường hợp \(\Delta'\ge0\)
ta kí hiệu
\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\) ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\) \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)
Lập bảng xét dấu ta được
+ Nếu \(m\le\frac{1}{2}\) thì \(a<0\) ; \(\Delta'\le0\)
nên (1) vô nghiệm
+ Nếu \(\frac{1}{2}\) <m< 1 thi a<0; \(\Delta'>0\)
\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\) hoặc \(x_2\)<x
+ Nếu m>2 thì a>0; \(\Delta'<0\)
nên (1) có tập nghiệm T(1)=R.
Ta có kết luận :
* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm
* Khi \(\frac{1}{2}\) <m<1 thì (1) có nghiệm
\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) <x<\(\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\)
* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)
* Khi 1<m\(\le\) 2 thì (1) có tập nghiệm
T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)
* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)
bởi Tô Hải Yến 07/11/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời