Giải hệ phương trình x^3+y^3=7 và x^3.y^3=-8
Giải hệ phương trình.
a) \(\left\{{}\begin{matrix}x^3+y^3=7\\x^3.y^3=-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+x+y^3+y=7\\x\left(x+1\right).y\left(y+1\right)=12\end{matrix}\right.\)
Trả lời (1)
-
a, Đặt \(\left\{{}\begin{matrix}a=x^3\\b=y^3\end{matrix}\right.\), hpt trên trở thành:
\(\left\{{}\begin{matrix}a+b=7\\ab=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-1\\b=8\end{matrix}\right.\\\left\{{}\begin{matrix}a=8\\b=-1\end{matrix}\right.\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}a=-1\\b=8\end{matrix}\right.\) , ta có: \(\left\{{}\begin{matrix}x^3=-1\\y^3=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}a=8\\b=-1\end{matrix}\right.\), ta có: \(\left\{{}\begin{matrix}x^3=8\\y^3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy hpt đã cho có nghiệm (x;y) là: (-1;2);(2;-1)
b, Câu này hình như sai đề bạn à, nếu sửa đề thì theo mình sẽ là:
\(\left\{{}\begin{matrix}x^2+x+y^2+y=7\\x\left(x+1\right). y\left(y+1\right)=12\end{matrix}\right.\)
Khi đó, hpt \(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=7\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=x^2+x\\b=y^2+y\end{matrix}\right.\), hpt trên trở thành:
\(\left\{{}\begin{matrix}a+b=7\\ab=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\\\left\{{}\begin{matrix}a=4\\b=3\end{matrix}\right.\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\), ta có: \(\left\{{}\begin{matrix}x^2+x=3\\y^2+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1\pm\sqrt{13}}{2}\\y=\dfrac{-1\pm\sqrt{17}}{2}\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}a=4\\b=3\end{matrix}\right.\) , ta có \(\left\{{}\begin{matrix}x=\dfrac{-1\pm\sqrt{17}}{2}\\y=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\) (chỗ này làm tắt vì nó dài quá :p)
Vậy hpt đã cho có nghiệm (x;y) là:
\(\left(\dfrac{-1\pm\sqrt{13}}{2};\dfrac{-1\pm\sqrt{17}}{2}\right);\left(\dfrac{-1\pm\sqrt{17}}{2};\dfrac{-1\pm\sqrt{13}}{2}\right)\)
bởi Hạnh Hy 22/10/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời