YOMEDIA

Giải hệ phương trình \(\left\{\begin{matrix} (x+\sqrt{x^2+4})(y+\sqrt{y^2+1})=2\\ 12y^2-10y+2=2\sqrt[3]{x^3+1} \end{matrix}\right.(x,y\in Z)\)

Em sẽ rất biết ơn ai giải giúp em bài này!

Giải hệ phương trình \(\left\{\begin{matrix} (x+\sqrt{x^2+4})(y+\sqrt{y^2+1})=2\\ 12y^2-10y+2=2\sqrt[3]{x^3+1} \end{matrix}\right.(x,y\in Z)\)

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • \(\left\{\begin{matrix} (x+\sqrt{x^2+4})(y+\sqrt{y^2+1}) \ \ (1)\\ 12y^2-10y+2=2\sqrt[3]{x^3+1} \ \ \ \ (2) \end{matrix}\right.\)
    Ta có: (1)\(\Leftrightarrow x+\sqrt{x^2+4}=\sqrt{(-2y)^2+4}+(-2y) \ (*)\)

    Xét hàm số đặc trưng 
    \(f(t)=\sqrt{t^2+4}+t\Rightarrow f'(t)=\frac{t}{\sqrt{t^2+4}}+1=\frac{1+\sqrt{t^2+4}}{\sqrt{t^2+4}}>\frac{t+\left | t \right |}{\sqrt{t^2+4}}\geq 0\)
    Suy ra f(t) là hàm số đồng biến trên R. Từ (*) suy ra: 
    \(f(x)=f(-2y)\Rightarrow x=-2y\)
    Thay vào phương trình (2) ta được: 
    \(3x^2+5x+2=2\sqrt[3]{x^2+1}\)
    \(\Leftrightarrow (x+1)^3+2(x+1)=(x^3+1)+2\sqrt[3]{x^3+1}(**)\)
    Xét hàm số g(t) =t3 + 2t ta thấy g(t) đồng biến trên R nên từ (**) suy ra 
    \(x+1=\sqrt[3]{x^3+1}\Leftrightarrow \bigg \lbrack\begin{matrix} x=0\\ x=-1 \end{matrix}\)
    Vậy hệ có hai nghiệm là (-1;\(\frac{1}{2}\)); (0;0)

      bởi Phan Thiện Hải 09/02/2017
    Like (1) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)