Giải bất phương trình \(\sqrt{x^3+2x^2+4x}+x\leq 2x\sqrt{x}+4\sqrt{x}\)
Bài này phải làm sao mọi người?
Giải bất phương trình \(\sqrt{x^3+2x^2+4x}+x\leq 2x\sqrt{x}+4\sqrt{x}\)
Trả lời (1)
-
ĐK: \(x\geq 0\)
\(\sqrt{x^3+20x^2+4x}+x\leq 2x\sqrt{x}+4\sqrt{x}\) \(\Leftrightarrow \sqrt{x}(\sqrt{x^2+20x+4}+\sqrt{x}-2x-4)\leq 0\)
\(\Leftrightarrow \bigg \lbrack\begin{matrix} x=0\\ \sqrt{x^2+20x+4}+\sqrt{x}-2x-4\leq 0 \ (*)(x>0) \end{matrix}\)
\((*)\Leftrightarrow \sqrt{x+\frac{4}{x}+20}+1-2\left ( \sqrt{x}+\frac{2}{\sqrt{x}} \right )\leq 0\)Đặt \(t= \sqrt{x}+\frac{2}{\sqrt{x}};t\geq 2\sqrt{2}\), ta có bpt: \(\sqrt{t^2+16}\leq 2t-1\)
\(\Leftrightarrow \left\{\begin{matrix} t\geq \frac{1}{2}\\ 3t^2-4t-15\geq 0 \end{matrix}\right.\Leftrightarrow t\geq 3\)
\(\sqrt{x}+\frac{2}{\sqrt{x}}\geq 3\Leftrightarrow x-3\sqrt{x}+2\geq 0\Leftrightarrow \bigg \lbrack\begin{matrix} 0<x\leq 1\\ x\geq 4 \end{matrix}\)
TN: \(S=[0;1]\cup [4;+\infty )\)bởi Goc pho 09/02/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời